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ABSTRACT: A particular two dimensional model in 
a stationary random field, which has a wide applications 
in statistical signal processing and in texture classifi- 
cations, is considered. We prove the consistency and 
also obtain the asymptotic distributions of the least 
squares estimators of the different model parameters. 
It is observed that the asymptotic distribution of the 
least squares estimators are multivariate normal. Some 
numerical experiments are performed to see how the 
asymptotic results work for finite samples. We propose 
some open problems at the end. 
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1. INTRODUCTION: 

We consider the following two dimensional model: 

Q 

y(m, n) = Y2 A°kcos(m\°k + nfi°k) + X(m, n); 

form= l,...M,n= 1,...,./V, (1.1) 

where J4°'S are unknown real numbers, A° 's, /i° 's are 
unknown frequencies. For identifiability, we need to 
assume A° € (—n,ir) and p°k € (0,7r) and they are dis- 
tinct.   X(m,n) is a two dimensional (2-D) stationary 

random field described as follows: 

P      Q 

X{m,n)= ]T   5Z Ki,j)e(m-i,n-j).     (1.2) 
i=-Pj=-Q 

Here {e(m,n)} is a two dimensional sequence of inde- 
pendent and identically distributed (i.i.d.) random vari- 
able with mean zero and finite variance. P and Q are 
arbitrary positive integers, 'q', the number of compo- 
nents, is assumed to be a known integer. Given a sam- 
ple y{m,n);m = 1,...,M,n = 1,...,N, the problem 
is to estimate A°k 's, X°k 's, /xjjl's for k = 1,... q. 

Here X(m,n) is a stationary random field and 
y(m,n) is a non-stationary random field. To see how 
this model represents different textures, the readers are 
referred to the work of Mandrekar and Zhang [17] or 
Francos et al. [2], where they provided nice 2-D image 
plots of y(m,ri), whose grey level at (m,n) is propor- 
tional to the value of y(m, n) and when it is corrupted 
by independent Gaussian noise field. So this model rep- 
resents mixed textures of regular textures with noise 
pictures. Our problem is to extract the regular tex- 
tures from the contaminated y(m,n). The problem is 
of interest in spectrographs and is studied using group 
theoretic methods by Malliavan [15,16]. Francos et al. 
[2] considered the Wold type decomposition of the ran- 
dom fields due to Helson and Lowdenslager [5,6] but 
no concrete mathematical results were obtained in that 
paper. Mandrekar and Zhang [17] also considered the 
spectral analysis of this problem under the following 
stationary assumptions on X(rn,n) 

oo oo 

X(m,n)=   J2    ^2  b(i,j)e(m-i,n-j),     (1.3) 
»=—oo j=—oo 



where {e(m,n)} is a double array sequence of indepen- 
dent random variables such that 

2. CONSISTENCY OF THE LSE'S: 

£    Yl   Hi,j)\ <oo, 
t= — OO J = 

E(e(m,n)) = 0, E(\e(m,n)\r) < oo, (1.4) 

for some constant r > 2. They proved that the spec- 
tral estimators of A's and p's are consistent estimators 
of the corresponding parameters when X(m,n) satis- 
fies (1.3) and (1.4). Unfortunately the corresponding 
estimators of the linear parameters (A's) are not con- 
sistent. Moreover, they could not obtain the asymptotic 
distribution of the different estimators. Therefore, the 
rates of convergence of those estimators are not known. 
Their results are mainly based on the work of Lai and 
Wei [14], which is quite involved mathematically. In 
this paper we mainly consider the least squares estima- 
tors (LSE's) of the different parameters and study their 
large sample properties. 

It may be argued that the assumption of Mandrekar 
and Zhang [17] on X(m,n) is somewhat weaker than 
ours, because in our case P < oo and Q < oo as 
defined in (1.2). But since P and Q are arbitrary, 
therefore (1.3) can be approximated arbitrary closely 
by (1.2) with sufficiently large P and Q, see Fuller [3]. 
Therefore, for all practical purposes th»y are equiva- 
lent. More over Mandrekar and Zhang [17] use higher 
order moment assumptions (r > 2) on e(m,n) to prove 
the necessary consistency results, whereas we assume 
only the finite second moment of e(m,n), to prove the 
consistency and the asymptotic normality of the LSE's 
of all the unknown parameters. In this paper the al- 
most sure convergence means with respect to the usual 
Lebesgue measure and it will be denoted by a.s. We will 
denote the set of positive integers by Z. Also the nota- 
tion a = 0(b(M,N)), means, \a/b(M,N)\ is bounded 
for all M and N. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we prove the strong consistency and in Section 
3 we obtain the asymptotic distributions of the LSE's 
of the parameters of the model (1.1), when q = 1. For 
q > 1, the results are obtained in Section 4. We perform 
some numerical experiments and present those results 
in Section 5 and finally we draw conclusions from our 
work and propose some open problems in Section 6. 

In this section, we obtain the consistency of the 
LSE's of the unknown parameters of the model (1.1), 
when q = 1, i.e., 

y(m,n) = A°cos(m\° + n/x°) + X(m,n); 

for m = l,...M,n = l,...,iV. 

The LSE's are obtained by minimizing Q(0), where 

M     N 

Q(9) = £ 51 ^m'n) - Acos{m\ + n/i))2 .    (2.1) 
m=ln=l 

Here 8 = (A,A,//), the true parameter value and the 
LSE of 0 are denoted by 6° = (A°,\°,ß°) and 6 = 
(A, A, ß) respectively. We make it explicit the assump- 
tions on X(m,n) as follows. 

Assumption 1: Let {X(m,n) e Z} be a stationary 
random field and each X(m,n) can be represented as 
(1.2), {e(m,n) £ Z} is a double array sequence of i.i.d. 
random variables with mean zero and variance a2. 

We use the following lemma to prove the necessary re- 
sults. 

Lemma 1 If the double array sequence {X(m,n); 
m,n G Z} satisfy Assumption 1, then 

1   1 M     N 

sup| —— ^2 ^ X(m, n)cos(ma)cos(nß)\ a-4' 0 
a,0 m=ln=l 

when min{M,N} -> oo. 

Proof: See Appendix. 

Note that the Lemma 1, is a very strong result. It 
extends some of the existing one dimensional results of 
Hannan [4], Walker [25], Rao and Zhao [22], Kundu [8] 
and Kundu and Mitra [12,13] to the 2-D case. It also 
generalizes the multidimensional results of Bai et al. 
[1], Rao et al. [23], Kundu and Mitra [11] and Kundu 
and Gupta [10] in some sense. 

Consider the following assumption on the parameters 
of the model (1.1), when q = I. 

Assumption 2: Let A0 be a arbitrary real number not 
identically equal to zero, A0 € (-7r,7r) and /i° € (0,7r). 



Now we state the consistency result as the following 
theorem. 

Theorem 1: Under the assumptions 1 and 2, the least 
squares estimators of the parameters of the 
model (1.1) when q = 1, are strongly consistent. 

Proof of Theorem 1: Expanding (2.1), with the help 
of Lemma 1 and using the similar technique as of Bai 
et al. [1], the results can be obtained. 

It is interesting to observe that although the errors 
are correlated the usual LSE's provide consistent so- 
lutions. For the general linear or non-linear models if 
the errors are correlated, it is well known (Rao; [20], 
Seber and Wild; [24]) that the usual LSE's are incon- 
sistent. In the correlated case, we need to consider the 
generalized least squares estimators, which are consis- 
tent. On the other hand, theorem 1, may not be too 
surprising, because it is known (Kundu; [9]) that for 
one-dimensional frequency model, even if the errors are 
correlated, the LSE's are consistent. In this respect 
one or higher dimensional frequency models are quite 
different than the usual non-linear models. 

3. ASYMPTOTIC NORMALITY OF THE 
LSE'S: 

In this section we obtain the asymptotic distribu- 
tions of the least squares estimators of the parameters 
of the model (1.1) when q = 1. We use the following 
notations. The first derivative of Q{9) is a 1 x 3 vector 
as 

~SQ(9)  SQ(9)  SQ{ey 

where 9 is a point on the line joining between the points 
9 and 0°. Note that Q'{9) = 0 and consider the 3 x 3 
diagonal matrix D as follows. 

" M-lN-l 0 0 

D = 0 M-27V-i 0 

0 0 M~h 

Now (3.1) can be written as 

(e - 9°) = -Q'{9) [Q"{9)} 
-l (3.2) 

if Q"{9) is a full rank matrix (see at the end of this 
section). Equivalently 

(9 - 9°)T>-1 = -[Q'(9°)-D][DQ"(9)B]-1.       (3.3) 

Now let's consider different elements of [Q'(0°)D]. 

1      8Q(9°) 

1      6Q(9°) 

1      SQ(9) 

-2 
MIN* 

M$N 

M$N 

M     N 

m=ln=l 

cos(mX +n/i), 
M     N 

m=ln=l 

Amsin(m\ + riß), 
M     N 

X:X;X(m,n) 
m=l n=l 

Ansin{m\ + nß). 

Q'{0) 
SA   '    SX   '    6p 

and the second derivative is a 3 x 3, matrix as follows; 

Using the central limit theorem of the stochastic pro- 
cess (see Fuller; [3]), and using the following results of 
Mangulis [18] for ß / 0, 

Q"(0) = 

i2Q{6) 
6A* 

S2Q(8) 
S\SA 

S2Q(0)      S*Q(0) 
6A5X SASß 

S2Qljä) 
6X2 

S2Q(0) 
SXSfi 

S2Q(6)       S2Q(6)       &2Q(6) 
SfiSA 6p6X 6p* 

Therefore expanding Q'{9) around 9°, we obtain 

Q'(9) - Q'(9°) = (9 - 9°)Q"(9) (3.1) 

n-K» TV 

lim -Ycos2(tß)= lim -Ysin2(tß) = l 
n-too 71 ^ n-»oo n ^ 2 

1    n 1    " 1 
lim -7ry^tcos2(tß)=  lim -^S^ tsin2(tß) = - 
i-K» n2 ^ «-too n2 L-J v ^'     4 

lim ^Yt2cos2(tß)= lim ^Y t2sin2(tß) = l 

1   n 

lim ^r V tsin(tß)cos(tß) = 0 
t=\ 



it follows that [<3'(0°)D] tends to a 3-variate normal 
distribution with mean vector zero and the dispersion 
matrix 2<r2cE, where 

c    = 
P      Q 

]T   £ b(i,j)cos(i\0)cos(jß0) 

P      Q 

£   £ b(i,j)cos(i\0)sin(jn°) 
i=-Pj=-Q 

P       Q 

£   £ ö(i,j>m(iA°)cOS(j>
0) 

P       Q 

i=-Pj=-Q 

+ (1) 

+ 

+ (2) 

(3.4) 

and 

S = 0    |^°2    \A°2 

0    i^°2    iA°2 

(3.5) 

Observe that because of theorem 1, 6 converges to 
6° a.s. and 

lim    (DQ"(0)D) =     lim     (DQ"(0°)D) = S. 

(3.6) 
Therefore from (3.3), we have the following result 

Theorem 2: Under the assumptions 1 and 2, the lim- 
iting distribution of {M*7Vi(i- A0), M§7Vi (A -A0), 
M$N%(ß - n0)} as Min(M,N) ->■ oo, is a 3-variate 
normal with mean vector zero and covariance matrix 
2<72c£-1, when S_1 has the following structure: 

£"!  = 

0 

48    1 
7 7P" 

_36    1 
7 ^ 

0 

_36    1 
7 751 

48    1 
7 TS1" 

(3.7) 

Note that to prove theorem 2, we use the fact Q'(6) 
is a full rank matrix a.s. for large M and N. In fact, 
we have used DQ"(0)D is of full rank a.s. (see (3.3)). 
Now from (3.6), it is clear that for large M and N, 
DQ"(0°)D is a full rank matrix. Since, the elements of 
the matrix Q"{6) are continuous functions of 9 and 6 

converges to 0° a.s., therefore DQ"(0)D is a full rank 
matrix a.s. for large M and N. 

From theorem 2, it is clear that the LSE of the am- 
plitude (A's) is asymptotically independent with the 
LSE's of the frequencies. Where as, the LSE's of the 
two frequencies have a high negative correlation. The 
asymptotic variances of the LSE's of A, A and /1 are 
proportional to jfa, ^ and M^„a respectively. 
Therefore, it is immediate that the convergence rates of 
A and ß are of the orders 0{M-3N~l) and 0(M_1 AT3) 
respectively and both of them are faster than the con- 
vergence rate of A, which is 0{{MN)~l). More over, 
the asymptotic variances of A and ß are inversely pro- 
portional to A0 . This may not be very surprising, be- 
cause if A0 is small, then it is difficult to estimate the 
frequencies. 

4. MULTIPARAMETER CASE: 

In this section we consider the model (1.1) for any 
integer q. We use the following notations 

61 = (Ai,\i,m),...,8g = (Aq,Xq,fiq), 

* = (0i,... A) 
The true parameter value and the LSE's of ¥ will be 
denoted by ¥° and 4» respectively. We investigate the 
consistency and the asymptotic properties of #, which 
is obtained by minimizing 

M     N 

T7i=l n=l 

]T Akcos{m\k + n/ifc) 
fc=i 

with respect to $. We need the following assumption. 

Assumption 3: Let A°,..., A°p be arbitrary real num- 
bers not any one of them are identically equal to zero, 
A°,...,A° 6 (-7T,7r) and they are distinct, similarly 
ßi,..., /ijj e (0,7r) and they are distinct. 

The following result provides the consistency results of 
the LSE's of the model parameter for the general case. 

Theorem 3: Under assumptions 1 and 3, $ is a stron- 
gly consistent estimator of $°. 



Proof: It is quite similar to the proof of Theorem 1, 
so it is omitted. 

To establish the asymptotic distribution of *, we 
use the following notations. The 3q x 3q diagonal matrix 
V and the 3c/x3<7 block diagonal matrix $_1 are defined 
as follows. 

D    ...    0 

V = 

0    ...    D 

dEr1 ■•• 

$_1 = 

where E"1 can be obtained from S_1 defined in (3.6) 

by replacing A0 with A® and similarly c/b's can be 
obtained from c's defined in (3.4) by replacing A0 and 
H° with A° and yPk respectively. 

Theorem 4: Under the same assumptions as Theorem 
3, ($ — \J/°)V-1 converges to a 3(jf-variate normal distri- 
bution with mean vector zero and the dispersion matrix 
2<T2$_1, where V-1 and <&~l are as defined above. r 

Proof: The proof can be obtained quite similarly as 
Theorem 2, so it is omitted. 

5. NUMERICAL EXPERIMENTS AND 
DISCUSSIONS: 

In this section we present some results of the numer- 
ical experiments performed to see how the asymptotic 
results behave for finite sample sizes. We performed all 
the experiments in Silicon Graphics, using the random 
deviate generator of Press et al. [19]. We considered 
the following model: 

y(m,n) = 4.0cos(2.0m + l.On) + 5.0cos(2.5m + 1.5n) 

+X(m,n), (5.1) 

X(m,n) has the following form 

X(m,n) = e(m,n) + .25e(m — l,n) + .25e(m + l,n) 

+.25e(m, n - 1) + .25e(m, n + 1) 

{e(m,n);m = 1,... ,M,n = 1,... ,N} are i.i.d. Gau- 
ssian random variables with mean zero and finite vari- 
ance er2. The stationary random field X(m,n) has 
that particular structure indicates that the error at the 
point (m, n) is equally influenced by the four equidis- 
tant points from (m,n). We considered M = N = 
10,20,30,40,50 and a = .25, .50, .75, 1.0. For each 
sample size and for each a we computed the LSE's of 
Ai, A2, Ai, A2,Mi and /i2 and observed the average es- 
timates and the average mean squared errors (MSE's) 
over five hundred replications. We 
present the results in Tables 1-5. We also report the 
asymptotic variances (ASV) for each parameters for 
comparison purposes. 

From the simulations it became very clear that as 
sample size increases or the variance decreases, the av- 
erage MSE's and biases of all the estimators decrease. It 
shows that all the estimators are consistent and asymp- 
totically unbiased. Biases are quite small even when 
the sample sizes are quite small. It is clear that the 
MSE's of the estimators of the non-linear parameters 
are smaller than that of the linear parameters even for 
small sample sizes. From the experimental study also it 
is clear that the estimation of the linear parameters are 
more difficult (in terms of accuracy) compared to the 
non-linear parameters. Some of the asymptotic behav- 
iors are present even at small sample sizes. For example 
if Ai < A2, then it is observed that the MSE's of fa and 
A2 are smaller than that of ß\ and Ai respectively. It is 
also observed that as sample size increases the MSE's 
become closer to the asymptotic variances, i.e. |ASV 
- MSE I decreases. Therefore looking at the behavior 
of the MSE's we can say that the asymptotic results 
can be used to draw the small sample inferences for the 
different model parameters. In some of the cases it is 
observed that the ASV is lower than the corresponding 
MSE. This may not be very surprising, since we con- 
sidered only five hundred replications, it may be due to 
the sampling errors (see Karian and Dudewicz; [7]). 

6. CONCLUSIONS: 

In this paper we consider the estimation of the pa- 
rameters of a two dimensional model, which has wide 
applicability in Statistical Signal Processing and in Tex- 



ture classifications. We study the asymptotic proper- 
ties of the LSE's of the model parameters and show 
that the LSE's are strongly consistent. We also obtain 
the asymptotic distributions of the LSE's, which pro- 
vides the rate of convergence of the LSE's. This paper 
generalizes some of the existing one dimensional results 
to the 2-D case. It generalizes some of the multidimen- 
sional results also in certain way. Numerical experi- 
ments suggest that the asymptotic results can be used 
to draw the small sample inferences for the linear and 
non-linear parameters. We do not address one impor- 
tant problem, namely the estimation of 'q'. That is a 
very important problem in practice. We may have to 
use certain information theoretic criteria like AIC, BIC 
or we may have to use the cross validation type tech- 
nique as proposed by Rao [21] for the one-dimensional 
case. Another important problem is to obtain an ef- 
ficient estimator of the different parameters by some 
non-iterative technique. Non iterative techniques are 
important for online implementations or to use as ini- 
tial guesses for any iterative procedures. More work is 
needed in these directions. 
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Here i.o. means infinitely often. Let U(m,n)=Z(m,n)- Note that 
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as M,N -» oo. 
Since E(Z(m,n)) -»• 0 as M,N ->• oo, therefore as M,N 
-> oo Therefore for large M and N, we have 

i    i     M    N M    N 

NMEE \E(Z(m,n))\ - 0 P{^\~ £ 5>K») * 
m=l n=l a./J   ^ M m=1 n=J 
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.-t* 
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Since J2'tLi t2e~t% < oo, from Borel Cantelli's lem- 
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m=ln=l i lemma. 

<2e-hMN((l + h2(T2)MN. 

Now choose /i = —3-, therefore for large M and N 
2(MN)i 

P{\jj~M £ ^2U(m,n)cos(ma)cos{nß)\ > e} 
m=ln=l 

2(MN) 

M     N 

'N M 

<Ce-(MN)ie/2   (C is a constant). 

Let K = M2N2, choose K points, 6\ = (ai,ßi),..., 
QK = {aKißx), such that for each point 6 = (a,ß) 
G (-7r,7r), we have a point Qj satisfying 

\ai-a\ + \ßi-ß\<     2n 

M2N2 



M 
Table 1 
= N = 10 

a Para. Al A2 Ai A2 Pi V2 
.25 LSE 3.998 5.001 2.000 2.500 1.000 1.500 

MSE 1.14E-3 6.30E-4 7.22E-6 2.15E-6 6.60E-6 2.05E-6 
ASV 1.41E-3 5.04E-4 6.04E-6 1.38E-6 6.04E-6 1.38E-6 

.50 LSE 4.000 4.998 2.000 2.500 1.000 1.500 
MSE 5.75E-3 2.60E-3 3.12E-5 8.96E-6 3.12E-5 8.05E-6 
ASV 5.64E-3 2.01E-3 2.42E-5 5.53E-6 2.42E-5 5.53E-6 

.75 LSE 3.992 4.999 2.000 2.500 1.000 1.500 
MSE 1.25E-2 6.02E-3 6.63E-5 1.87E-5 6.27E-5 1.82E-5 
ASV 1.27E-2 4.53E-3 5.44E-5 1.24E-5 5.44E-5 1.24E-5 

1.0 LSE 3.989 5.005 2.000 2.500 1.000 1.500 
MSE 2.15E-2 1.00E-2 1.16E-4 3.55E-5 1.08E-4 3.38E-5 
ASV 2.26E-2 8.06E-3 9.67E-5 2.21E-5 9.67E-5 2.21E-5 

M 
Table 2 
= N = 20 

er Para. Ax A2 Ai A2 ßi ß2 
.25 LSE 4.000 5.001 2.000 2.500 1.000 1.500 

MSE 1.24E-4 5.48E-4 3.81E-7 1.11E-7 3.69E-7 1.16E-7 
ASV 3.53E-4 1.26E-4 3.78E-7 8.64E-8 3.78E-7 8.64E-8 

.50 LSE 3.999 5.002 2.000 2.500 1.000 1.500 
MSE 5.48E-4 3.38E-4 1.57E-6 3.77E-7 1.65E-6 3.61E-7 
ASV 1.41E-3 5.04E-4 1.51E-6 3.45E-7 1.51E-6 3.45E-7 

.75 LSE 3.997 5.004 2.000 2.500 1.000 1.500 
MSE 1.65E-3- 8.00E-4 3.15E-6 8.81E-7 2.94E-6 9.91E-7 
ASV 3.17E-3 1.13E-3 3.40E-6 7.77E-7 3.40E-6 7.77E-7 

1.0 LSE 4.000 5.005 2.000 2.500 1.000 1.500 
MSE 2.33E-3 1.37E-3 6.82E-6 1.72E-6 6.63E-6 1.71E-6 
ASV 5.64E-3 2.01E-3 6.04E-6 1.38E-6 6.04E-6 1.38E-6 

M 
Table 3 
= iV = 30 

a Para. Ai A2 Ai A2 Mi ß2 
.25 LSE 4.000 5.000 2.000 2.500 1.000 1.500 

MSE 5.37E-5 3.93E-5 8.19E-8 2.15E-8 7.96E-8 1.99E-8 
ASV 1.57E-4 5.60E-5 7.46E-8 1.71E-8 7.46E-8 1.71E-8 

.50 LSE 4.000 5.000 2.000 2.500 1.000 1.500 
MSE 2.16E-4 1.51E-4 3.09E-7 8.27E-8 2.80E-7 7.79E-8 
ASV 6.27E-4 2.24E-4 2.98E-7 6.82E-8 2.98E-7 6.82E-8 

.75 LSE 4.001 5.003 2.000 2.500 1.000 1.500 
MSE 5.31E-4 3.76E-4 6.55E-7 1.75E-7 7.19E-7 1.69E-7 
ASV 1.41E-3 5.04E-4 6.71E-7 1.54E-7 6.71E-7 1.54E-7 

1.0 LSE 4.001 5.001 2.000 2.500 1.000 1.500 
MSE 1.04E-3 7.13E-4 1.21E-6 3.22E-7 1.24E-6 2.97E-7 
ASV 2.51E-3 8.95E-4 1.19E-6 2.73E-7 1.19E-6 2.73E-7 



M 
Table 4 
= N = 40 

a Para. Ai A2 Ai A2 Pi P2 
.25 LSE 4.001 5.001 2.000 2.500 1.000 1.500 

MSE 1.14E-5 1.60E-5 2.49E-8 5.98E-9 2.37E-8 6.07E-9 
ASV 8.81E-5 3.15E-5 2.36E-8 5.40E-9 2.36E-8 5.40E-9 

.50 LSE 4.001 5.000 2.000 2.500 1.000 1.500 
MSE 6.47E-5 7.66E-5 9.57E-8 2.53E-8 9.58E-8 2.43E-8 
ASV 3.53E-4 1.26E-4 9.44E-8 2.16E-8 9.44E-8 2.16E-8 

.75 LSE 4.000 5.001 2.000 2.500 1.000 1.500 
MSE 1.20E-4 1.78E-4 2.11E-7 5.69E-8 2.04E-7 5.94E-8 
ASV 7.93E-4 2.83E-4 2.12E-7 4.86E-8 2.12E-7 4.86E-8 

1.0 LSE 4.001 5.000 2.000 2.500 1.000 1.500 
MSE 1.74E-4 2.81E-4 3.70E-7 8.61E-8 3.77E-7 9.05E-8 
ASV 1.41E-3 5.04E-4 3.78E-7 8.64E-8 3.78E-7 8.64E-8 

M 
Table 5 
= AT = 50 

a Para. Ai A2 Ax A2 Pi Pi 
.25 LSE 3.999 5.000 2.000 2.500 1.000 1.500 

MSE 2.00E-5 1.37E-5 9.05E-9 2.48E-9 8.65E-9 2.33E-9 
ASV 5.64E-5 2.01E-5 9.67E-9 2.21E-9 9.67E-9 2.21E-9 

.50 LSE 4.000 5.000 2.000 2.500 1.000 1.500 
MSE 5.89E-5 4.85E-5 3.70E-8 1.02E-8 3.59E-8 9.97E-9 
ASV 2.26E-4 8.06E-5 3.87E-8 8.84E-9 3.87E-8 8.84E-9 

.75 LSE 4.000 5.000 2.000 2.500 1.000 1.500 
MSE 1.67E-4" 1.21E-4 9.29E-8 2.12E-8 9.14E-8 2.01E-8 
ASV 5.08E-4 1.81E-4 8.70E-8 1.99E-8 8.70E-8 1.99E-8 

1.0 LSE 3.999 4.999 2.000 2.500 1.000 1.500 
MSE 3.15E-4 2.34E-4 1.80E-7 3.76E-8 1.59E-7 3.89E-8 
ASV 9.02E-4 3.22E-4 1.55E-7 3.54E-8 1.55E-7 3.54E-8 
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